Mkdocs Tips¶
Text can be deleted and replacement text added. This can also be combined into onea single operation. Highlighting is also possible and comments can be added inline.
Formatting can also be applied to blocks by putting the opening and closing tags on separate lines and adding new lines between the tags and the content.
- H2O
- ATA
不可折叠
可以是 note,info, abstract,tip,success,question,warning,failure,danger,bug,example,quote
可以折叠
你说为什么今天吃什么呢
Tabs同样也有
Example
Phasellus posuere in sem ut cursus (1)
Lorem ipsum dolor sit amet, (2) consectetur adipiscing elit. Nulla et euismod nulla. Curabitur feugiat, tortor non consequat finibus, justo purus auctor massa, nec semper lorem quam in massa.
I'm an annotation!
I'm an annotation as well!
| Method | Description |
|---|---|
GET | Fetch resource |
PUT | Update resource |
DELETE | Delete resource |
graph LR
A[Start] --> B{Error?};
B -->|Yes| C[Hmm...];
C --> D[Debug];
D --> B;
B ---->|No| E[Yay!]; sequenceDiagram
autonumber
Alice->>John: Hello John, how are you?
loop Healthcheck
John->>John: Fight against hypochondria
end
Note right of John: Rational thoughts!
John-->>Alice: Great!
John->>Bob: How about you?
Bob-->>John: Jolly good! stateDiagram-v2
state fork_state <<fork>>
[*] --> fork_state
fork_state --> State2
fork_state --> State3
state join_state <<join>>
State2 --> join_state
State3 --> join_state
join_state --> State4
State4 --> [*] classDiagram
Person <|-- Student
Person <|-- Professor
Person : +String name
Person : +String phoneNumber
Person : +String emailAddress
Person: +purchaseParkingPass()
Address "1" <-- "0..1" Person:lives at
class Student{
+int studentNumber
+int averageMark
+isEligibleToEnrol()
+getSeminarsTaken()
}
class Professor{
+int salary
}
class Address{
+String street
+String city
+String state
+int postalCode
+String country
-validate()
+outputAsLabel()
} Lorem ipsum1 dolor sit amet, consectetur adipiscing elit.2
- HTML for content and structure
- JavaScript for interactivity
- CSS for text running out of boxes
- Internet Explorer ... huh?

- Lorem ipsum dolor sit amet, consectetur adipiscing elit
- Vestibulum convallis sit amet nisi a tincidunt
- In hac habitasse platea dictumst
- In scelerisque nibh non dolor mollis congue sed et metus
- Praesent sed risus massa
- Aenean pretium efficitur erat, donec pharetra, ligula non scelerisque
The homomorphism \(f\) is injective if and only if its kernel is only the singleton set \(e_G\), because otherwise \(\exists a,b\in G\) with \(a\neq b\) such that \(f(a)=f(b)\).
[[memo]]